Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast.
نویسندگان
چکیده
Methylation of histone H3 at lysine 4 (H3 Lys-4) or lysine 9 (H3 Lys-9) is known to define active and silent chromosomal domains respectively from fission yeast to humans. However, in budding yeast, H3 Lys-4 methylation is also necessary for silent chromatin assembly at telomeres and ribosomal DNA. Here we demonstrate that deletion of set1, which encodes a protein containing an RNA recognition motif at its amino terminus and a SET domain at the carboxy terminus, abolishes H3 Lys-4 methylation in fission yeast. Unlike in budding yeast, Set1-mediated H3 Lys-4 methylation is not required for heterochromatin assembly at the silent mating-type region and centromeres in fission yeast. Our analysis suggests that H3 Lys-4 methylation is a stable histone modification present throughout the cell cycle, including mitosis. The loss of H3 Lys-4 methylation in set1Delta cells is correlated with a decrease in histone H3 acetylation levels, suggesting a mechanistic link between H3 Lys-4 methylation and acetylation of the H3 tail. We suggest that methylation of H3 Lys-4 primarily acts in the maintenance of transcriptionally poised euchromatic domains, and that this modification is dispensable for heterochromatin formation in fission yeast, which instead utilizes H3 Lys-9 methylation.
منابع مشابه
Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae.
Histone methylation is known to be associated with both transcriptionally active and repressive chromatin states. Recent studies have identified SET domain-containing proteins such as SUV39H1 and Clr4 as mediators of H3 lysine 9 (Lys9) methylation and heterochromatin formation. Interestingly, H3 Lys9 methylation is not observed from bulk histones isolated from asynchronous populations of Saccha...
متن کاملHigh conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts.
Histone 3 lysine 4 (H3 Lys(4)) methylation in Saccharomyces cerevisiae is mediated by the Set1 complex (Set1C) and is dependent upon ubiquitinylation of H2B by Rad6. Mutually exclusive methylation of H3 at Lys(4) or Lys(9) is central to chromatin regulation; however, S. cerevisiae lacks Lys(9) methylation. Furthermore, a different H3 Lys(4) methylase, Set 7/9, has been identified in mammals, th...
متن کاملMultifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex
Histone modifiers are critical regulators of chromatin-based processes in eukaryotes. The histone methyltransferase Set1, a component of the Set1C/COMPASS complex, catalyzes the methylation at lysine 4 of histone H3 (H3K4me), a hallmark of euchromatin. Here, we show that the fission yeast Schizosaccharomyces pombe Set1 utilizes distinct domain modules to regulate disparate classes of repetitive...
متن کاملMethylation of histone H3 Lys 4 in coding regions of active genes.
Posttranslational modifications of histone tails regulate chromatin structure and transcription. Here we present global analyses of histone acetylation and histone H3 Lys 4 methylation patterns in yeast. We observe a significant correlation between acetylation of histones H3 and H4 in promoter regions and transcriptional activity. In contrast, we find that dimethylation of histone H3 Lys 4 in c...
متن کاملSignaling through Chromatin: Setting the Scene at Kinetochores
Histone H3 lysine 4 trimethylation needed for transcription is mediated by the Set1 methyltransferase and requires prior monoubiquitination of histone H2B. In this issue, Latham et al. (2011) report that dimethylation of the yeast kinetochore protein Dam1 by Set1 similarly requires H2B monoubiquitination. Thus, H2B ubiquitination signals for methylation beyond chromatin.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 Suppl 4 شماره
صفحات -
تاریخ انتشار 2002